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1. Historical Introduction

Eureka and Archimedes

The fine-structure constant α is a dimensionless number that is ubiquitous in physics, but
has remained an enigma for over a century. Does it have mathematical significance analogous
to π? Its numerical value is now known accurately to 12 significant figures but it has no
satisfactory mathematical explanation as shown by the following opinions.

Here is what Richard Feynman had to say about α: Where does α come from; is it related
to π, or perhaps to e? Nobody knows, it is one of the great damn mysteries of physics: a
magic number that comes to us with no understanding by man. You might say the hand of
God wrote the number and we don’t know how He pushed his pencil.

The mathematical statistician I.J.Good argued that a numerological explanation would
only be acceptable if it came from a more fundamental theory that provided a Platonic
explanation of the value.

By contrast, the real number π was fully understood more than two thousand years ago
by Archimedes, who showed how to calculate it to arbitrary accuracy.

In the mid 18th century, Euler discovered the deep relation between π and complex
numbers C, embodied in his famous theorem e2πi = 1. Euler’s proofs had to wait for
Riemann a century later. In the same period Hamilton discovered the quaternions H which
generalized complex numbers from 2 to 4 dimensions, but were non- commutative. Although
physicists embraced the non-commutative group SU(2) of unit quaternions, as opposed to
the commutative group U(1) of complex numbers, they had problems with the algebra of
non-commutative polynomials. In particular there appeared to be no quaternionic version of
Euler’s formula.

In the early 20th century, von Neumann (and Murray) discovered the algebras that now
bear his name, and factors of Type II in which dimensions take all (positive) real values,
in contrast with factors of Type I which take just integer values. This was later refined by
Alain Connes into a theory of non- commutative geometry [2].
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Around the same period, Eddington speculated controversially and inconclusively on the
fine-structure constant [13].

In the mid-20th century, Hirzebruch [1] created the formalism of the Todd genus, which
revolutionized geometry and topology. Spurred on by this, Atiyah, Bott and Singer created
index theory, which was taken up enthusiastically by physicists.

In this paper I will weave all these diverse strands together to provide a rigorous and elegant
mathematical model of the fine structure constant α, or rather 1/α. It will be denoted by
the Cyrillic letter Ж which I will connect both to π and to e, answering Feynman’s plea.
It arises from a fundamental Platonic theory as required by Good. This theory is called
renormalization and it rests on solid mathematical foundations.

Renormalization is a flow involving change of scale which physicists think of as Energy.
Under this flow, numbers get renormalized, and when taken to the limit, π gets renormalized
to Ж. The direction of the flow depends on the whether numbers increase or decrease and
is a matter of convention. The standard convention is that Energy increases so π has to
increase to Ж, which models 1/α.

Before proceeding further, I should point out that physicists already have a model for α
which fits remarkably well with experimental data. This model rests on Feynman diagrams,
but these have shaky foundations and involve herculean computational work. So even
Feynman himself, as the quotation above makes clear, wanted to know what this mysterious
number α really was. The purpose of this paper is to answer Feynman’s question. I will
produce a Platonic answer which does not rest on dubious numerology or experimental data.

This is amathematical paper in the spirit of Archimedes, Euler and their modern successors.
It provides a mathematical model for the physical world, and can be interpreted as giving
a rigorous foundation for the results derived from Feynman diagrams, without the heavy
computational work.

However theoretical physicists have struggled to get to 9 decimal places and a Platonic
number should be calculable, like π, to arbitrary accuracy. I will therefore indicate how to
produce a decimal expansion of Ж to, say 12 decimals, to impress any sceptics. This is the
one place where I delve not into numerology, but into numerical calculation intrinsic to the
theory. Moreover I use a fast algorithm that produces 9 decimal places in 3 tranches of 4
steps. The extension to 12 decimal places probably requires just 5 further steps.

The plan of the paper is as follows. In section 2, I explain the main strategy and use
renormalization to define the Todd map T (see 3.4) This gives Ж = T (π), putting it in
Plato’s world. This already achieves my main aim of explaining what α really is.

For computational purposes, and to relate to Feynman diagrams, I then introduce, in
section 7, Ч = T (γ) where γ is Euler’s constant γ . This Cyrillic letter is related to Ж, by



THE FINE STRUCTURE CONSTANT 3

the formula

(1.1) Ч/γ = Ж/π.

In section 7, I build on this formula showing how it helps with the computation of Ж. There
is one further step, inspired by Euler, to speed up convergence which makes the computation
much simpler. All this is put together in section 8.

2. Statements and Strategy

The Dublin bridge and Hamilton
In this section I will indicate the main strategy and formulate the precise statements which

will be proved. The key question is how to extend the Archimedes-Euler approach to π, from
the commutative world of C to the non-commutative world of Hamilton’s quaternions H,
constructed by an infinite iteration of exponentials, discrete or continuous. The key idea
goes back to von Neumann as I now explain.

2.1 The von Neumann hyperfinite factor A of type II . The hyperfinite type II-1
factor A is unique up to isomorphism. It is constructed by an infinite sequence of iterated
exponentials, followed by taking the weak closure in Hilbert space. This process converts
type I, with integer dimensions, to type II with real dimensions. A dimension which is
formally infinite in type I becomes finite in type II, so I call the process renormalization.
All factors have an invariant trace mapping the factor to its centre. Any inner automorphism
gives an isomorphic but different trace. The comparison between two such automorphisms
is what leads to the Todd map T (see 3.4).

2.2 The Hirzebruch Formalism. Hirzebruch [1], following in the footsteps of Euler
and Riemann, introduced a formal algebraic process of multiplicative sequences. In such
processes he defined exponentials over Q. He showed that any such exponential has a
generating function, and he focused on the Todd exponential, whose generating function
is the Bernoulli function x

1−e−x . The fact that this function is analytic implies that the
Hirzebruch process extends from Q to R, implementing the weak closure of 2.1.

2.3 Hirzebruch and algebras over Q. The relation between 2.1 and 2.2 is best
understood as follows. The von Neuman algebra A is defined over R, has R as centre
and weights (4.3) in R. The renormalization flow of weights (4.4) in R is continuous with
weights modeling Energy . The Hirzebruch algebra A(Q) is defined over Q, has centre Q
and weights in Q. The flow of weights in Q is discrete. The embedding of Q into R induces a
functor from Hirzebruch algebras to von Neuman algebras which takes A(Q) into A. A and
A(Q) are unique up to isomorphism in their respective categories. Changes of weight induce
isomorphisms (4.4). Since R is the weak closure of Q (by Dedekind sections), A is the weak
closure of A(Q). A is constructed (section 3) from a sequence of exponential operations.
A(Q) is constructed by Hirzebruch (see section 2.4) from a similar sequence. A(C) is the
complexification of A(R).
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These constructions are functorial and map A(Q) into A and embed the centre of A(Q)
into the centre of A. The two different weights, r < 1/e < 1/r, give different central
isomorphisms in 2.2 which differ by the automorphism denoted by T (3.4). For A(Q) these
inverse weights must be rational. In 4.6 we make the simple choice 1/r = 4 but, for rapid
convergence in section 7, we choose 1/r = 16.

2.4 Synthesis. Using 2.1 and 2.2, π is renormalized to a positive real number denoted
by the Cyrillic letter Ж. Euler’s formula e2πi = 1 gets renormalized to the Euler-Hamilton
formula e2Жw = 1, where w = π

Жi.

2.5 Conclusion. The number Ж is a mathematical candidate for 1/α. It satisfies the
criteria of both Feynman and Good, restores the reputation of Eddington and enhances that
of Hirzebruch. More details are set out in sections 3-8.

Finally, this explanation of α should put an end to the anthropic principle, and the mystery
of the fine-tuning of the constants of nature. Nobody has ever wondered what the Universe
would be like if π were not equal to 3.14159265... Similarly no one should be worried what
the Universe would be like if Ж were not

137.035999...

2.6. There is one more important constant of nature and that is Newton’s constant G
(whose ratio to c3/~e is dimensionless, where e is not Euler’s exponential but the charge
of the electron). In a subsequent paper [7], I will examine this question by starting with
the octonions. The non-associativity of the octonions is a clear sign that this is a much
harder problem. This will not surprise followers of Einstein’s General Theory of Gravitation.
The von Neumann factor this time will be the hyperfinite Type III, which has no preferred
rational weight.

3. Details on the hyperfinite factor

The Königsberg bridges and Euler
In this section we will use the hyperfinite factor A = A(C). We recall its definition and

basic properties.

3.1. A is the weak closure of the infinite tensor product of End(C2) = lim A(n) = Clifford
algebra of Hilbert space as explained below.

3.2. In 3.1, A(n) is mapped into A(n+1) by putting the identity 1 in the (n+1)th place.

3.3. The formal Hilbert space H with coordinates zj, (for j = 1, 2, ...) is given the
Hermitian metric in which the nth coordinate is multiplied by 2−2n. This ensures convergence
of the trace for the Clifford algebra A of this metric. The weak closure is taken in H ⊗H.

3.4. The trace on End(C2) induces a trace on A, with values in C. The restriction to
the centre C(A) gives the renormalization of numbers. Note that C(A) is isomorphic to C
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by two different isomorphisms t+ and t− corresponding to the two eigenvalues of the 2 × 2
matrix. The Todd map T : C → C is just the change from one to the other: T = t−1− ◦ t+.
Note that while traces are linear, the Todd map is highly non-linear.

3.5. Just as H is the affine part of the right projective line Proj(H2), based on the first
quaternionic coordinate, so A is the affine part of Proj(A2). The anti-involution u→ 1/u of
H, switching left and right quaternions, induces an anti-involution ∗ on Proj(A2). This leaves
invariant the complex projective line Proj(C(A)2) and the 8 points on it : 1,±i,±j,±k. The
map T above, which is the coordinate description of ∗, is also multiplication by the central
element w of 3.6 and so the renormalization of multiplication by i as formulated in 3.7.

3.6. There is a unique element w with T (w) = i, while the identity element 1 has T (1) = 1.
T (π) is denoted by Ж.

3.7. T is the map that maps Euler’s formula to the Euler-Hamilton formula, as in 2.4.

4. Weights and weak closure

The magic of Bernoulli

4.1. If we use powers of say 3 or 5 in section 3, instead of powers of 2, we will get different
algebras, just as rational numbers with powers of 2 or 3 or 5 in the denominator are not
isomorphic.

4.2. But, if we pass to the weak closures, to form the von Neumann algebras, all become
isomorphic, since the rationals with denominators powers of 2 or 3 or 5 are dense in the
reals. That is why A is unique (up to isomorphism).

4.3. The inverse of the chosen integer, such as 2,3, or 5, which was used in section 3, is
called the weight. It is a point in the open interval (0,1).

4.4. Rescaling by x→ x
1−e−x , on the inverses, leads to the flow of weights and establishes

concretely the isomorphism of A based on different weights. See section 6 for more on the
Bernoulli function.

4.5. As explained in 2.7, for the octonions the von Neuman algebra is of type III. The
flow of weights is then more subtle and will be examined in [7].

4.6. Renormalization, ignoring the weight, is conformal, depending only on the conformal
structure of C. The weight of the complex number z = reiθ is ln(r), which lies in (0, 1)
provided r < e−1. Any such choice of weight gives the unit disc in C the hyperbolic metric
of curvature −1. Since e < 4, the simplest (inverse) integer weight is r = 4. We could make
this choice but, as we will see in section 7, it is better to take r = 16.



6 MICHAEL ATIYAH

4.7. From its definition, involving the operation x → 2x, the Todd map of section 3
is, at each stage, exponential (taking addition into multiplication) but we need to examine
what happens when we iterate and pass to the weak closure. This problem was essentially
dealt with in the formalism of multiplicative sequences, developed by Hirzebruch, without
reference to von Neumann algebras. This will be explained in the next section.

5. The Hirzebruch formalism

The Todd genus and Hirzebruch

5.1. For the case of inverse-integer weights, Hirzebruch formalized the notion of exponential
maps and found the most general solutions [1]-Chapter 3. His motivation came from the
behaviour of certain manifold invariants, in algebraic geometry, under taking Cartesian
products. But the problem was purely formal and applied to all manifolds, giving topological
invariants [especially after Atiyah-Singer index theory]. He showed that the basic example
was the Todd genus, named after J.A. Todd, whose generating function, due to Bernoulli,
is x

1−e−x , already exploited by Euler. It is crucial that this function, which underpins
Hirzebruch’s formalism, is analytic in the closed interval [0, 1/2] (see section 6). This ensures
that the normalized trace of 4.7 extends to the weak closure A. Following Hirzebruch, we
have named it after Todd and denoted it by T . Hirzebruch’s formalism gave spectacular
explicit formulae and led to his early fame.

5.2. Recall that Archimedes calculated the circumference of a circle as the upper bound
of inscribed regular N -gons where N = 2n, while the same limit was reached from above
by circumscribed N -gons Of course, Archimedes knew that squares could be replaced by
regular polygons with any number of sides (and that they need not be regular). This is the
antecedent of A being essentially independent of the weight.

5.3. Archimedes also deduced the formula πr2 for the area of a circular disc of radius r,
from his tombstone result. This was his great theorem (which he wanted inscribed on his
tombstone), that a sphere has the same area, slice by slice, as a cylinder. In modern parlance
they are symplectically equivalent.

5.4. In the complex plane the unit disc and the whole plane are conformally distinct,
which is why the hyperbolic plane differs metrically from the Euclidean plane. But, as the
radius of the disc tends to infinity, the curvature of the hyperbolic plane tends to zero and
we recover the Euclidean plane. All geometric formulae in the Euclidean plane are limits of
formulae in the hyperbolic plane, and it is sometimes easier to get Euclidean formulae this
way. An example is the famous theorem of Gauss for the area of a spherical triangle, which
follows directly from the tombstone theorem of Archimedes described in 5.3.

5.5. As mentioned at the beginning of section 2, when C is replaced by C2 = H, this has
to be renormalized because H is not commutative. It will then be viewed as the limit of the
renormalized hyperbolic 4-ball, as will be explained in detail in section 7.
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6. Analytic functions

The genius of von Neumann

This section is a digression about the role of analytic functions in mathematical models.

6.1. Let m be a positive real number. An analytic function f(m, r) of the real variable r in
the closed interval [0, 1/m], extends to an analytic function F (m, z) of the complex variable
z = eimrθ, with branch points at r = 0 and r = 1/m. By Euler’s formula it is then periodic
in r with period 2π/m, so that there are branch points for all r = k/m with k ∈ Z.

6.2. There is a symmetry (duality) about the mid-point r = 1/2m which corresponds to
inverting z or changing the sign of theta.

6.3. The Bernoulli function B(z) = z
1−1/z is the mid-point (m = 2) value of B(m, z). It

leads to the function b(2, r) = er

1−e−r .

6.4. The Hirzebruch formalism establishes analyticity based on the Bernoulli functions of
6.3. For Hirzebruch, m is the Chern class of a line-bundle. The weight of the von Neumann
factor is just a point in the open interval (0, 1). The flow of weights just corresponds to
moving the base-point along this interval. For integer m, it is a a discrete flow by jumps.

6.5. If we truncate the infinite tensor product of section 3 at a finite level A(n), the only
real numbers we meet are rational and our formulae are algebraic. However, they are not
in a closed system, so we get untidy approximations (also known as edge effects). But we
know from the theory of von Neumann factors, that these approximations will, in the limit,
yield the beautiful formulae of complex analysis, involving transcendental numbers like π.
Moreover, there is a perfect duality in the limit as explained in 6.2.

6.6. There is a General Principle about mathematical models which should be borne in
mind: C∞ functions describe physics, Analytic functions describe mathematics. Physics has
uncertainty (freewill), Mathematics has certainty (determinism). This is modulo Gödel, and
logical difficulties in the foundations of mathematics, centering on the Axiom of Choice or
proof by contradiction. But most physicists, with their feet on the ground, rightly do not
care about such niceties.

6.7. Application of this Principle connects physical particles to their mathematical idealization.
There is a mathematical parameterm, wherem2 is a model for mass, as in 6.1 above. Ifm = 0
we are on the light cone, both mathematically and physically (though we should distinguish
between the light cone and its dual in which m is replaced by 1/m). For m = 0, the theory
is mathematically conformal and physically Diracian. Physically, small m represents a weak
gravitational force, pervading the entire Universe. The number m is positive, reflecting the
fact that gravitation is an attractive force. But as explained in section 7 of [8] changing the
sign of m interchanges Newtonian gravitational attraction for Coulombic electrical repulsion.
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6.8. If we only consider a finite number of decimal places, then we are in a truncated
version of the algebras A(n) as in 3.2, and the issue of C∞ versus analytic is left open. From
a rational approximation one cannot tell whether the subsequent digits, when found, will
provide the decimal expansion of an analytic or just a differentiable function. This is why
such subtleties can, as noted in 6.6, be ignored in practice.

6.9. In the truncated version, renormalization is only realized approximately, with untidiness
at the edges. This untidiness disappears in the limit. The fine-structure constant is a
mathematical idealization from the conformal world, but we can get arbitrary good approximations
by using truncated versions. The number of terms needed in the truncation will depend on
the number of terms required for the desired approximations.

7. Calculation of Ж and Ч

The charisma of Bott
The key formula (1.1), relating Ж and Ч, follows from the formula

(7.1) 2Ч = lim
n→∞

j=n∑
j=1

2−j(1−
∫ j

1/j

log2 x dx)

Since the terms in (7.1) are all positive and the sum is bounded by a convergent series, Ч is like
γ the limit of a monotone increasing bounded sequence. For γ, the integral analogous to that
in (7.1) is twice the integral from 1 to ∞, and the same is then true for the renormalization
Ч of γ explaining the factor 2 in (7.1). (7.1) also shows why we could replace e by 2 and ln
by log2. The proof of (7.1) follows from the mimicry principle of 7.6 below. To use (7.1) for
computation, we need to specify the initial data, something which will be done in section 8.
The numerical verification that Ж agrees with 1/α to all decimal places, so far calculated,
follows from the numerics of section 8.

This comes in three steps, the first involving the sum and integral of the formulae (1.1)
and (7.1) as with γ. But, as Euler discovered, the convergence in this process is too slow for
effective computation.

So, the second step makes n jump by leaps of 24 = 16 and speeds up the process. Looking
from infinity, this comes from slowing down. This is a subtle point that will be explained
in section 8. The third step is to calculate the first 16, which provide the base for the
subsequent leaps of 16.

This third step is the one which leads to the number 137, as first proposed by Eddington
[13]. There are now various ways of arriving at Eddington’s number, all by pure algebra,
which appear in several different papers [5] and [9]. The simplest is

(7.2) 137 = 1 + 8 + 128 = 20 + 23 + 27.

Eddington first proposed 136 = 8+128, based correctly on Clifford algebras as in [4], but he
had difficulty justifying the additional 1 to get 137. The reason he had this difficulty is that
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the group SO(3) of rotations in R3 is not simply connected. In fact Ж (our improvement
on Eddington) is related, not to a particular orthogonal group, but to the stable orthogonal
group SO(N) for large N , It is not π1(SO(3)) = Z/2 ,which is relevant for Ж, but the
stable homotopy group π1+k(SO(3 + k)) = 0, for k > 1 and not congruent to 3 mod 4. The
sequence of three powers of 2 that is needed to justify 137, can then be read off from the
tables in [4], the algebra behind the Bott periodicity theorems [12]. The stable homotopy
groups are periodic with period 8 or semi-periodic with half-period 4 if we switch orthogonal
and symplectic.

Ironically, Eddington was later laughed out of court, when 137 was found to need a long
string of corrections. In fact these corrections just arise from the iterative process that
defines Ж, so Eddington’s two mistakes cancel each other out. Stability helps the tricky
initial stage. A wobbly start acquires stability from subsequent motion in a very precise
sense as on a bicycle.

This somewhat lengthy digression has fully restored the reputation of Eddington as asserted
in this section above, showing that his gut instinct was essentially correct.

The Clifford algebra of a quadratic form Q differs subtly from the Clifford algebra of −Q,
which is why we should take jumps of 24 = 16, rather than 23 = 8. This guarantees that our
approximations to Ж are monotonically increasing and not oscillating. In terms of series
this is the difference between a series of positive terms, such as

∑
1
n2 , and a series of terms

which alternate in signs, such as
∑ (−1)n

n
.

The value of Ж(n) that emerges from these calculations varies with the arithmetic mod
16 of the starting point. To eliminate this variation, we should start with 0 mod 16, so that
we get unbroken blocks. Musicians, following Pythagoras, will notice the close analogy with
octaves in both major and minor keys. Our starting point, to avoid dissonance, should be
the key of C major. In 2.3, Hirzebruch’s approach was explained as the arithmetic version
of that of von Neumann. The algebra A(Q) being a refinement of the von Neuman algebra
A. This clarifies the sections that follow.

7.3. Hirzebruch showed that a multiplicative sequence was determined by its value on
line-bundles, which he called its generating function. Applied to A, as the limit of A(n), this
corresponds to restricting to the first factor A(1).

7.4. As explained in 5.1, Hirzebruch showed that the Bernoulli function is this generating
function. The exponential term indicates, as in 4.6, the role of the hyperbolic metric of
curvature −1. It is better therefore to replace x by a multiple mx, so we can take the
limit when m tends to zero (something Hirzebruch also did). This amounts to rescaling the
weights of 4.3 and 4.4.
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7.5. For reasons that will become apparent in 9.4, in the renormalized hyperfinite world
of the algebra A, the quaternions H replace the complex numbers C, and the unit sphere
in H replaces the circle, Ж replaces π and the central element w replaces i. In general,
renormalization involves a choice of basis but, in the centre, the choice of basis is immaterial.
That is why in 1.1 and 7.1, the computation of Ж is related to the computation of the
Euler-Hamilton constant Ч and mimics the relation between π and γ. We will turn this
mimicry into a Principle in 7.6 below. Having chosen the weight 1/4 in 4.6 we are then over
the rationals Q. Hirzebruch’s work leads to analyticity which self- propagates: an analytic
function of an analytic function is analytic and its derivatives are analytic. The theory of
(hyperfinite) von Neumann algebras tells us that the choice of weight was irrelevant.

7.6. The Mimicry Principle then asserts that any analytic formula about real numbers
implies the same analytic formula about their (hyperfinite) renormalizations. For example,
renormalization preserves order, differentiation and ultimately analyticity.

7.7. Archimedes got π from an increasing bounded sequence. The mimicry principle gives
us Ж from a similar sequence as claimed in 2.4. The two formulae (1.1) and (7.1) now follow
by mimicry from the corresponding formulae for π and γ. More precisely, each truncated
version, for fixed n is analytic. The mimicry is then applied before we pass to the limit.

7.8. The next section on numerics will carry out the computations and check the answers
at every level n. This provides a proof analogous to those of Archimedes and Euler and is
sufficient for physicists. But, as mentioned in 6.6, mathematical logicians since Gödel have
raised the bar for the notion of proof. It is probable that such computations will never fail,
i.e a counterexample will never be found, but that it is not possible to prove this without
additional axioms.

7.9. The logical issues raised in 7.8 appear in a different form in the size of the steps
needed for the effective computation of further decimals in the expansion of Ж. I asserted,
for example, that 16 should be sufficient to produce 9 figure accuracy. There is no algorithm
that will confirm this fact, though general theory will guarantee that some (unknown) large
number would be sufficient. But someone doing the calculation is likely to stumble on a
sufficient number, probably finding that 16 is enough. But 12 figure accuracy might well
require 32. So, the logical qualms that hard-nosed physicists ignore at the conceptual level,
come back to haunt them at the computational level. Gödel can only be ignored at your
peril.

8. Double Limits

Cartwright and Littlewood
8.1 Archimedes, Euler and single limits. Archimedes defined and calculated π as

a limit of increasing approximations π(n). These have simple geometric interpretations in
terms of isosceles triangles of angle 2π/n. This was elegantly reformulated in terms of
complex numbers by Euler through his famous formula based on taking the unit circle as
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e2πiθ. The sequences π(n) converge slowly but, as Euler discovered, they converge much
faster if n is a power of 2.
8.2 Hamilton and Ж. When C is replaced by H we have described a renormalization

process which, by the principle of mimicry, replaces Euler’s formula by the Euler-Hamilton
formula in which π is renormalized to Ж.

The Archimedes sequence π(n) is now renormalized to a Hamilton sequence Ж(n), but
there is an important difference between the sequence of Archimedes and that of Hamilton.
For the former, n is just a positive integer while, for the latter, n is a pair of coupled integers
(n, p) with p odd and |p| < n, (but p can be negative) . Note that p will appear in an
exponential eπip/n which is a primitive 2n-th root of unity. The single limit of Archimedes,
where n tends to infinity, is now replaced by a double limit with both n and p tending to
infinity.

The mimicry principle controls p, after which we just take the single limit over n. This
gives an explicit sequence converging to Ж. But again mimicry tells us that the convergence
is very slow. We are free to choose any cofinal subsequence, so to speed things up we will
take n = 2s+1. We then put j = 2s − p. We carry out the numerics in the next section.

8.3 The numerics. The explicit formula needed to calculate Ж to arbitrary accuracy
is (8.11) at the end of this section. The rest of 8.3 explains why (8.11) follows from the
definition of Ж in Section 2. Define sequences v(j), t(j) ∈ C, k(j) ∈ Z, for j ≥ 0 (all logs
are taken to be base 2 in this section):

log v(j + 1)− v(j) = log k(j)(8.1)
t(j) = v(j + 4)(8.2)

log k(j + 1) = k(j), k(j + 1) = 2k(j)(8.3)

Use initial conditions k(0) = 0, v(0) = i, where i is chosen in preference to −i. This
seems harmless and it is, if only made once as for C. But we have to iterate it a large
number of times (say n). This means we have 2n choices or 2n−1 if we want to preserve signs
(orientation). For n = 1, i.e. for C itself, this means the choice is unique. But for large n the
choice is enormous and reflects the large number of orderings of n non-commuting variables.
However inner automorphisms leave an invariant trace unaltered so the many choices have
no effect on the traces which define Ж. What is important is that each v(j) is a primitive
2nth root of unity.

For any choices, equations (8.1)-(8.3) lead to the formula

(8.4) log v(j) = v(j − 1) + k(j − 2) for j < n

with a similar formula for t(j). Next define the sequence of products Ж(n) = v(0)v(1)...v(j)
and the two cofinal, sequences whose limits are independent of all choices:

(8.5) Ж = lim
j→∞

Ж(j)
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(8.6) Ж = lim
j→∞

Ж(j + 4)

Formulae (8.1)-(8.3) show that the inductive step from j − 1 to j is exponential, so that the
sum in (8.4) becomes a product at the next step. The initial conditions of (8.3) seem to run
into trouble when we put j = 1, since j − 2 is then negative and formally not defined. But
since we are interested in the limits in (8.5) and (8.6) we can ignore the first term in (8.5),
and (8.6) is well into the “stable range". The formulae (8.1)-(8.3) define the Todd sequence
in the Hirzebruch formalism based on the weight 4. As we have seen, Hirzebruch’s formalism
extends to the weak closure of the von Neumann factor. This leads to (8.4) defining the real
number Ж as the limit of finite products Ж(j). Formula (8.6) shifts by 24 = 16 and leads to
rapid convergence and effective computation (but see 7.10 for a caveat).

We now come to the subtle point alluded to after (7.1). For the sequences (8.5) and (8.6)
to converge, the iteration has to be made at the slowest possible speed t, so that the product
expansion

(8.7)
n∏
i=1

{1 + ta(i)}

is arbitrarily close to the sum

(8.8) 1 + t
n∑
i=1

a(i)

up to terms of a fixed degree tm, provided t (viewed as time) is sufficiently small. Focusing
on the limit as n→∞ of (8.7) or (8.8) involves the inverse or dual point of view expressed
in 6.2 and interchanges fast and slow.

A good analogy is provided by a scientific rocket being sent say to Mars. It has to be
launched into space with a high velocity but, to ensure a soft landing on Mars, it has
to descend very slowly. Readers who prefer to avoid metaphors or analogies can consult
Hirzebruch [1], where he evaluates a formal power series of cohomology classes on a complex
n-manifold, and notes that all terms above dimension n give zero in a stable manner. This
is precisely similar to the way the product (8.7) is equivalent to the sum (8.8) . The only
difference is that for Hirzebruch the parameter t is a 2-dimensional cohomology class, whereas
in (8.7) and (8.8), t is interpreted as time. This was typical of Hirzebruch’s magic. This
skillful interpretation of parameters, with t becoming time, not only smells of Relativity,
but also acquires a computer reality when we compare the speed of algorithms. Our fast
algorithm, following Euler, means that the algorithm in question gives the answer on your
computer in a much smaller number of steps.

Note that the limits in (8.5) and (8.6) appear to involve only the positive integers, but
careful examination of the integral term in (7.1) shows that it involves both j and 1/j, a
multiplicative symmetry that converts to the additive symmetry between n and −n.
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The Eddington number of 137 simply comes from the first few steps. The emergence of
the Eddington number has been discussed above.

For rockets to Mars in the previous paragraphs, we have to think of rockets that plan to
return to Earth, with the outward and return journeys being symmetrical. The very soft
landing is obviously needed to avoid damage to the rocket!

We can describe what we are doing in the following way. Given any number 2n, we can
factor it as a product of two numbers 2n(0)2n(1) where n = n(0) + n(1). As n gets larger, we
keep n(0) fixed, say n(0) = 4, and let n(1) get larger. This describes our chosen algorithm
and explains the shift by 4 with t(n) = v(n+ 4). This will give the correct 12 digits. When
we increase n, to improve on the approximations Ж(n) we will have to increase n(0) and n(1),
but we cannot be sure of their optimal values. However, since our sequences are monotonic
increasing, we can adopt the stopping rule : stop one step before the product (8.7) exceeds
the sum (8.8). This can be formalized in terms of the Bernoulli numbers Bn

k of higher order
which, as explained below, are essentially Hirzebruch’s Todd polynomials.

The notation automatically chooses the initial conditions for the blocks of 16 described in
section 1. Starting from the Eddington number 137, explicit calculations as indicated above
and explained below now give the value

(8.9) Ж = 137.035999...

This agrees with current values and more calculations will predict subsequent decimals,
confirming the expectations of 2.4.

The double limit process was elegantly treated by Hirzebruch, following the earlier work of
Norlund on Bernoulli polynomials,see section 1.8 of [1]. These are defined by the Hirzebruch
mutiplicative sequence over a polynomial ring Q[y], whose generating function is

Q(y, x) = x+
y + 1

ex(y+1) − 1
.

The Bernoulli polynomials of higher order Bn
k , defined by Norlund in 1924, are essentially

the Todd polynomials related by

(8.10) Tk(c1, .., ck) =
(−1)k

k!
Bn
k (γ1, . . . , γn), for k ≤ n

where the ci are regarded as the elementary symmetric functions in γ1, ., γn . If we put all
γi = 1, so that ci is the binomial coefficient

(
n+1
i

)
, we get the Bernoulli numbers of higher

order Bn
k : for k = 1, we recover the usual Bernoulli numbers.

We take j and n to be as in 8.2, so that eπij/n is a primitive 2n-th root of unity. Our
explicit limit formula for Ж is now the double limit

(8.11) Ж = lim
n→∞
j→∞

2−2nBn
k(j)
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recall from (8.3) that k(j + 1) = 2k(j) for j > 0 and, from (8.2), that eπik/n is a primitive
2nth root of unity.

For each n, the limit over j is independent of the choices of primitive root, and this will
be seen in the explicit formula below. To get accuracy to 12 decimal places, we start anew
with n(0) = 5 and Ж(1) = 137.035 as starting point. This will give the required accuracy
with very high probability. The uncertainty is not in the final value of Ж , but in the rate of
convergence of the approximation Ж(n+ 5).

The verification that the rules, given in the first part of this section, yield the value of
Ж given in (2.5) to 9 decimal places, follows by mimicry from the corresponding formula for π.

The same will be true for 12 decimal places, and the last 3 digits will emerge from mimicry
of a more accurate approximation to π. It remains as an exercise to write these down and,
as mentioned, there are uncertainties about the rate of convergence.

9. Further Comments

The natural philosophy of Maxwell

Having explained the fine-structure constant α and its inverse 1/α in mathematical terms,
I will now indicate many other ways in which similar ideas have been used in my publications.
I will then move on, and explain various physical contexts in which these mathematical ideas
seem useful. While such agreement between mathematics and physics can never be proved,
it can become increasingly plausible. Maxwell clearly enunciated this meta-physical attitude
150 years ago [11].

9.1. The iteration required to move from Type I to Type II factors in section 2 is very
closely related to the iteration in my proof of the Feit- Thompson Theorem [6]. We should
now distinguish between geometry and arithmetic ( as will be explained in section 10). In [2]
the iterative construction was geometric, the ground field being fixed as Q(ρ). For a finite
group this iteration stops after a finite number of steps, but for suitable infinite discrete
groups, the iteration need not stop and could lead to the Type II factor A. Such matters
are related to Burnside type issues and they will be discussed in my forthcoming paper [10]
with A.Zuk.

The arithmetic version of the algebraic structure in [6] built from the group of order 1 is
an infinite tower of extensions of Q(ρ) leading to Ж.

9.2. More general Type II factors can arise from an ergodic group action on a finite
measure space as realized by von Neumann.

9.3. As mentioned in 2.6, Newton’s constant G will, in a forthcoming paper [7], be treated
in a similar fashion to α, but involving a Type III factor, based on the octonions rather than



THE FINE STRUCTURE CONSTANT 15

the quaternions.

Although motivated by physical constants (α and G), the comments 9.1, 9.2 and 9.3
were mathematical. I now turn to physical interpretations of the mathematical models.
Such interpretations provide a tentative dictionary between mathematics and physics. Any
dictionary is constantly being modified and never bridges the entire gap between the two
languages and cultures. That is why it is called meta-physics, a topic I will pursue in
subsequent papers. So, with this preamble, here is an initial description of the dictionary.

9.4. The 4 real division algebras, the reals R, the complex numbers C, the quaternions
H and the octonions O translate into the 4 basic forces. The electro-weak forces come from
R and C, while the strong force comes from H, and gravity comes from O. The dictionary,
for the first 3, can be expressed in terms of the ascending sequence of compact groups
U(1) ⊂ U(2) ⊂ U(3). The 4-th term of the sequence, arising from O, cannot be a group,
because O is not associative. One option is to use the group of fractions f(t)/g(t), where t
is a formal symbol and f and g are power series over C with constant term 1.

9.5. The last group in 9.4 is not finite-dimensional, but it can be approximated by
truncating the power series to polynomials. These approximations are finite-dimensional
but are not groups. The untidy effects of the truncation were explained in 6.9.

9.6. Since 7.6 was used to understand α, and since 9.5 arose from the octonions, this
indicates that gravity is playing a role, which seems surprising since α is related only to
electro-magnetism. The explanation is that, while not necessary for the definition of Ж

in section 2, the best way to compute α is to add parameters and then study carefully
coupled limits as they tend to zero, as done in section 7 and pioneered by Gauss. Although
this is a purely mathematical process, its physical interpretation suggests that experimental
calculations to determine approximations to α should be made in a weak gravitational field.
But this is precisely what a lab is. There is no way entirely to avoid the gravitational force
of other matter.

9.7. In 6.8, I distinguished between differentiable functions and analytic functions, explaining
that the latter were not physical. In [8] the Atiyah-Sutcliffe determinants were analytic, so
that their real and imaginary parts determined each other. This translates back to saying
that energy and entropy determine each other: true in the model but not in the physical
world. However, looking at any finite part of the decimal expansion of a number does not
tell you whether you are in a differentiable or an analytic situation. This explains why
all the fundamental equations of physics, including Maxwell’s equations and its non-linear
generalizations, are analytic with the possible exception of Einstein’s equation of General
Relativity.

9.8. Notice that, while we kept e fixed and renormalized π, we could have renormalized
both, with the coupling provided by the Euler- Hamilton equation. The renormalized e
can be written as eε and the Euler-Hamilton equation becomes eεЖw = 1. The coupling is
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πε = t/u, so that πε/k = t/ku for any integer k (where k, t, u are as in section 8).This
fully answers Feynman’s question. Both e and π are involved, but we have chosen to keep e
and just renormalize π. More symmetrically, α is modelled by the ratio of the homogeneous
variables ε/Ж. In affine coordinates, where we put ε = 1, we recover our previous formula of
1/Ж.

9.9. As Euler discovered, π is ubiquitous in commutative mathematics. Based on the
mimicry principle, I therefore expect Ж to be ubiquitous in non- commutative (but associative)
mathematics. This has implications for combinatorics with, for example, n! replaced by p(n)
the number of partitions of n. I plan to investigate such matters in a subsequent paper.

9.10. The 4 basic forces modeled in 9.4 are those of the standard model, and α is studied
in that context. However, our approach can easily be extended beyond the standard model
and there would then be corrections to follow. The latest experimental data [14] points in
that direction and has yet to be explored.

9.11. The Hirzebruch formalism, applied to the Riemann-Roch Theorem and, more
generally, to the index theorem,leads to a Type II index Theorem. Its physical interpretation
is a formula for the Witten index Tr(−1)F . This will be explained elsewhere.

10. Conclusion

I would just like to understand the electron. - Albert Einstein

The interpretation of the fine structure constant alpha that I have offered, opens the door
to a new view of physics, which I will now try to describe in broad outline.

In essence von Neumann provided a framework for physics (both classical and quantum)
based on the real number field R. This enabled geometric foundations for physics to be laid.
In parallel Hirzebruch provided a framework based on the rational number field Q, leading
to arithmetic foundations. Together von Neumann and Hirzebruch laid the foundations of
the subject of Arithmetic Physics.

Thirty years ago in [16] I explained Manin’s vision about a classical bridge between
arithmetic and physics. I then went on to speculate that there should be a quantum version
of Manin’s bridge stretching from quantum field theory to Langlands . I now believe that
this can be built on the mimicry principle that has emerged from the study of alpha [17].

So Einstein was right. Understanding the quantum electron requires understanding alpha.
This then opens the door to all else.

But there are limitations to human understanding, so we have to settle for what we can
understand, and here we need the collective wisdom from all branches of science.
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This paper can be read at different levels by different scientists.Experimental physicists will
be satisfied by several more decimal places for α, correctly predicted. Theoretical physicists
may want formal Platonic explanation, as Feynman and Good required. Mathematicians
would like to see rigorous proofs, as provided by von Neumann algebras. Logicians may
question the foundations related to the Axiom of Choice. But, to plagiarise Abraham Lincoln:
one can never please all the people all the time.
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